Partial wave analysis of c ð 2 S Þ ! p p
نویسندگان
چکیده
M. Ablikim, M.N. Achasov, O. Albayrak, D. J. Ambrose, F. F. An, Q. An, J. Z. Bai, R. Baldini Ferroli, Y. Ban, J. Becker, J. V. Bennett, M. Bertani, J.M. Bian, E. Boger,* O. Bondarenko, I. Boyko, R. A. Briere, V. Bytev, H. Cai, X. Cai, O. Cakir, A. Calcaterra, G. F. Cao, S. A. Cetin, J. F. Chang, G. Chelkov,* G. Chen, H. S. Chen, J. C. Chen, M. L. Chen, S. J. Chen, X. Chen, Y. B. Chen, H. P. Cheng, Y. P. Chu, D. Cronin-Hennessy, H. L. Dai, J. P. Dai, D. Dedovich, Z. Y. Deng, A. Denig, I. Denysenko, M. Destefanis, W.M. Ding, Y. Ding, L. Y. Dong, M.Y. Dong, S. X. Du, J. Fang, S. S. Fang, L. Fava, C. Q. Feng, P. Friedel, C. D. Fu, J. L. Fu, O. Fuks,* Y. Gao, C. Geng, K. Goetzen, W.X. Gong, W. Gradl, M. Greco, M.H. Gu, Y. T. Gu, Y.H. Guan, A.Q. Guo, L. B. Guo, T. Guo, Y. P. Guo, Y. L. Han, F. A. Harris, K. L. He, M. He, Z. Y. He, T. Held, Y. K. Heng, Z. L. Hou, C. Hu, H.M. Hu, J. F. Hu, T. Hu, G.M. Huang, G. S. Huang, J. S. Huang, L. Huang, X. T. Huang, Y. Huang, Y. P. Huang, T. Hussain, C. S. Ji, Q. Ji, Q. P. Ji, X. B. Ji, X. L. Ji, L. L. Jiang, X. S. Jiang, J. B. Jiao, Z. Jiao, D. P. Jin, S. Jin, F. F. Jing, N. Kalantar-Nayestanaki, M. Kavatsyuk, B. Kopf, M. Kornicer, W. Kühn, W. Lai, J. S. Lange, P. Larin, M. Leyhe, C.H. Li, Cheng Li, Cui Li, D.M. Li, F. Li, G. Li, H. B. Li, J. C. Li, K. Li, Lei Li, Q. J. Li, S. L. Li, W.D. Li, W.G. Li, X. L. Li, X.N. Li, X.Q. Li, X. R. Li, Z. B. Li, H. Liang, Y. F. Liang, Y. T. Liang, G. R. Liao, X. T. Liao, D. Lin, B. J. Liu, C. L. Liu, C. X. Liu, F. H. Liu, Fang Liu, Feng Liu, H. Liu, H. B. Liu, H. H. Liu, H.M. Liu, H.W. Liu, J. P. Liu, K. Liu, K.Y. Liu, Kai Liu, P. L. Liu, Q. Liu, S. B. Liu, X. Liu, Y. B. Liu, Z. A. Liu, Zhiqiang Liu, Zhiqing Liu, H. Loehner, G. R. Lu, H. J. Lu, J. G. Lu, Q.W. Lu, X. R. Lu, Y. P. Lu, C. L. Luo, M.X. Luo, T. Luo, X. L. Luo, M. Lv, C. L. Ma, F. C. Ma, H. L. Ma, Q.M. Ma, S. Ma, T. Ma, X. Y. Ma, F. E. Maas, M. Maggiora, Q.A. Malik, Y. J. Mao, Z. P. Mao, J. G. Messchendorp, J. Min, T. J. Min, R. E. Mitchell, X.H. Mo, H. Moeini, C. Morales Morales, K. Moriya, N.Yu. Muchnoi, H. Muramatsu, Y. Nefedov, C. Nicholson, I. B. Nikolaev, Z. Ning, S. L. Olsen, Q. Ouyang, S. Pacetti, J.W. Park, M. Pelizaeus, H. P. Peng, K. Peters, J. L. Ping, R.G. Ping, R. Poling, E. Prencipe, M. Qi, S. Qian, C. F. Qiao, L. Q. Qin, X. S. Qin, Y. Qin, Z. H. Qin, J. F. Qiu, K.H. Rashid, G. Rong, X.D. Ruan, A. Sarantsev, B.D. Schaefer, M. Shao, C. P. Shen, X.Y. Shen, H.Y. Sheng, M.R. Shepherd, W.M. Song, X.Y. Song, S. Spataro, B. Spruck, D. H. Sun, G.X. Sun, J. F. Sun, S. S. Sun, Y. J. Sun, Y. Z. Sun, Z. J. Sun, Z. T. Sun, C. J. Tang, X. Tang, I. Tapan, E. H. Thorndike, H. L. Tian, D. Toth, M. Ullrich, I. Uman, G. S. Varner, B. Q. Wang, D. Wang, D. Y. Wang, J. X. Wang, K. Wang, L. L. Wang, L. S. Wang, M. Wang, P. Wang, P. L. Wang, Q. J. Wang, S. G. Wang, X. F. Wang, X. L. Wang, Y.D. Wang, Y. F. Wang, Y.Q. Wang, Z. Wang, Z. G. Wang, Z. Y. Wang, D.H. Wei, J. B. Wei, P. Weidenkaff, Q. G. Wen, S. P. Wen, M. Werner, U. Wiedner, L. H. Wu, N. Wu, S. X. Wu, W. Wu, Z. Wu, L. G. Xia, Y. X. Xia, Z. J. Xiao, Y. G. Xie, Q. L. Xiu, G. F. Xu, G.M. Xu, Q. J. Xu, Q. N. Xu, X. P. Xu, Z. R. Xu, F. Xue, Z. Xue, L. Yan, W.B. Yan, Y.H. Yan, H.X. Yang, Y. Yang, Y.X. Yang, H. Ye, M. Ye, M.H. Ye, B. X. Yu, C. X. Yu, H.W. Yu, J. S. Yu, S. P. Yu, C. Z. Yuan, Y. Yuan, A.A. Zafar, A. Zallo, S. L. Zang, Y. Zeng, B.X. Zhang, B.Y. Zhang, C. Zhang, C. C. Zhang, D.H. Zhang, H. H. Zhang, H.Y. Zhang, J. Q. Zhang, J.W. Zhang, J. Y. Zhang, J. Z. Zhang, LiLi Zhang, R. Zhang, S. H. Zhang, X. J. Zhang, X.Y. Zhang, Y. Zhang, Y.H. Zhang, Z. P. Zhang, Z. Y. Zhang, Zhenghao Zhang, G. Zhao, H. S. Zhao, J.W. Zhao, K. X. Zhao, Lei Zhao, Ling Zhao, M.G. Zhao, Q. Zhao, S. J. Zhao, T. C. Zhao, X.H. Zhao, Y. B. Zhao, Z. G. Zhao, A. Zhemchugov,* B. Zheng, J. P. Zheng, Y.H. Zheng, B. Zhong, L. Zhou, X. Zhou, X. K. Zhou, X. R. Zhou, C. Zhu, K. Zhu, K. J. Zhu, S. H. Zhu, X. L. Zhu, Y. C. Zhu, Y.M. Zhu, Y. S. Zhu, Z. A. Zhu, J. Zhuang, B. S. Zou, and J. H. Zou
منابع مشابه
Enhancement of Lidocaine Analgesic..
|̂ ß ý l û G þ c v þ A K ý l ô o A ë A q A ð õ A Ñ o ô } | ø B ÿ G þ k o k ÿ ì õ Â Ï þ A u Q Þ ú k o A è Û B ÿ G þ k o k ÿ G ú O ñ ù B ü þ ü B G ú 3⁄4 õ o R Þ í ß þ ø í p A û G B u B ü p O ß ñ ý à | ø B ÿ G ý ù õ y þ k o Æ I A ð v B ð þ ô k A ì L r y ß þ o A ü Y A u Q . A ü ò o ô } G þ k o k ÿ k o G v ý B o ÿ A q W p A c þ | ø B ÿ ì d õ Æ ú y ß í þ , ð õ A c þ K ...
متن کاملNAG Fortran Library Chapter Introduction S – Approximations of Special Functions
1 Scope of the Chapter This chapter is concerned with the provision of some commonly occurring physical and mathematical functions. The majority of the routines in this chapter approximate real-valued functions of a single real argument, and the techniques involved are described in Section 2.1. In addition the chapter contains routines for elliptic integrals (see Section 2.2), Bessel and Airy f...
متن کاملAdaptive cubature Kalman filter based on the variance-covariance components estimation
Although the Kalman filter (KF) is widely used in practice, its estimated results are optimal only when the system model is linear and the noise characteristics of the system are already exactly known. However, it is extremely difficult to satisfy such requirement since the uncertainty caused by the inertial instrument and the external environment, for instance, in the aided inertial navigation...
متن کاملLewis Causation is a Special Case of Spohn Causation
Lewis ([1973a]) famously defined event c to be causally relevant to event e in world w just in case O c ð Þ and O e ð Þ as well as :O c ð Þ !:O e ð Þ are true in w, where O c ð Þ and O e ð Þ say that c occurs and that e occurs, respectively. For him, this implied that O c ð Þ ! O e ð Þ is true, because he was assuming the underlying logic to be VC, which validates ^ ð Þ ! ð Þ. If one works with...
متن کاملNAG Fortran Library Routine Document C02AFF
The sign in the denominator is chosen so that the modulus of the Laguerre step at zk , viz. L zk ð Þ j j, is as small as possible. The method can be shown to be cubically convergent for isolated roots (real or complex) and linearly convergent for multiple roots. The routine generates a sequence of iterates z1; z2; z3; . . . , such that P zkþ1 ð Þ j j < P zk ð Þ j j and ensures that zkþ1 þ L zkþ...
متن کاملA basis theorem for a class of max-plus eigenproblems
We study the max-plus equation P þ cðxÞ 1⁄4 max xpspM ðHðsÞ þ cðgðsÞÞÞ; xA1⁄20;M ; ð*Þ where H : 1⁄20;M -ð N;NÞ and g : 1⁄20;M -1⁄20;M are given functions. The function c : 1⁄20;M -1⁄2 N;NÞ and the quantity P are unknown, and are, respectively, an eigenfunction and additive eigenvalue. Eigensolutions c are known to describe the asymptotics of certain solutions of singularly perturbed differenti...
متن کامل